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Abstract—This work presents Dimitri, an open-software &
open-hardware robot torso equipped with modular low cost com-
pliant joints, built to allow advanced research on human-robot
interaction, force-aware object manipulation and environment
exploration. The robot has 13 DOFs: 4 DOFs with series elastic
actuators in each arm, 3 DOFs for roll, pitch and yaw of the waist,
and 2 DOFs for head pan and tilt. Our main innovation is in the
employment of a polyurethane based compliant spring system
attached to conventional robotics servo motors, turning them
into low-cost series elastic actuators (SEAs). To demonstrate the
robot’s capabilities in the context of cognitive robotics research
and goal-directed behavior, we successfully employed a multiple
timescale recurrent neural network (MTRNN), enabling the
robot to reproduce combined prototypical movement patterns
previously trained via interactive demonstration.

Index Terms—humanoid robot, compliant joints, MTRNN

I. INTRODUCTION

Traditional robots, such as the ones found in the industry, are
designed to perform highly decoupled movements following
pre-programmed trajectories, while rejecting environmental
disturbances along the way. This is typically achieved, among
other things, by the employment of very stiff joint mecha-
nisms, heavy and rigid link structures and powerful actuators.
More recently, however, advances in the field of human-
robot interaction have increased the demand for safe force-
aware actuators with active or passive compliance. Beside
being intrinsically safer, lighter compliant mechanisms allow
the development of more advanced manipulation algorithms
that explore the coupling with the environment through force
feedback and control.

This work presents Dimitri, an open-platform torso hu-
manoid robot equipped with low-cost modular SEAs in its arm
joints. Dimitri is designed with the goal of allowing research
on fields related to next-generation human-robot interaction
and compliant force-based object manipulation. This type of
architecture opens new grounds for biologically inspired neu-
rorobotics research by allowing a more human-like approach
to object manipulation and interaction. The modular SEAs
enable the robot to solve manipulating problems that require
compliance, force feedback and control. The robot can explore
the dynamics of the environment by sensing the constraints it
imposes to the robot’s arms measured via torque feedback. The

control of the strength being applied to an object allows the
robot to “feel” the object and understand movement constraints
imposed by the environment.

In order to validate the platform in the context of neuro-
robotics, we chose to implement a test experiment using a
multiple timescale recurrent neural network (MTRNN), which
is an active topic of research by the authors of this work. The
MTRNN architecture was originally proposed by one of our
co-authors, and it was chosen due to its capacity of encoding
dynamic movement patterns, learning lower level primitive
skills and organizing these skills in higher level goal directed
plans.

The rest of this paper is organized as follows: Section II
presents technical specifications regarding Dimitri’s hardware
and software, and describes the methodology employed for
the MTRNN experiment; Section III shows the results; and
Section IV makes the final remarks.

II. METHODOLOGY

This section is divided in four parts. Part II-A reviews the
robot’s main specifications. Part II-B describes de series elastic
actuators (SEAs) employed in the arm joints. Part II-C briefly
describes the software architecture. Finally Part II-D describes
the MTRNN experiment.

A. Robot Specifications

Dimitri, shown in Fig. 1, was developed to be an innovative
and robust open-source and open-hardware robot. All source
code is available on GitHub1 and the mechanical design files
are available upon request.

Our goal was to create a humanoid robot suitable for
research on compliance control and capable of safe human-
robot interaction while keeping the project simple and mod-
ular. The result is a very minimalist mechanical design that
can be assembled and maintained even by researchers with
little experience on mechanical hardware. The robot can be
easily extended to match specific purposes, including custom
accessories, such as adding end effectors, designing expressive
faces and adding custom external body frame.

1https://github.com/tioguerra/Dimitri



Fig. 1: Photograph of Dimitri.

Table I sumarizes the main features of the robot. The robot’s
structure is simple to manufacture and assemble. Figure 2 and
Table II show the Denavit-Hartenberg parameters of this robot.

Dimitri’s frame parts are made of 3mm thick aluminium
sheets that are laser-cut and bent using a CNC bending
machine. Only a few of the parts are milled in a CNC
Lathe for aesthetic reasons. The series elastic actuators are
composed of polyurethane springs and machined aluminium
mounts equipped with a magnetometer based circuit board for
measuring their angular displacements (see more about the
SEAs in subsection II-B).

For the motors we chose the well known Dynamixel servo
actuators manufactured by Robotis, using model MX-106R for
arms and waist joints, and model MX-64R for neck. These
actuators are networked together, along with the feedback
circuit for the SEAs through a standard RS-485 bus using the
Dynamixel protocol. For the computer we used an embedded
NUC computer equipped with a 4-channel mPCI-e RS-485
board. The computer communicates with the motors and SEAs
at 400kbps. These motors from Robotis allow torque control
and combined with the polyurethane based compliant spring
allow for force based modelling and manipulation. The motors
provide up to 10N.m of stall torque, which is enough for the
applications this robot was built to perform.

B. Modular series elastic actuator

The main feature of Dimitri is in its pair of arms, each
equipped with compliant joints in their 4 DOFs. A Series
Elastic Actuator [1] basically consists of a traditional servo
actuator in series with a spring connected to the load. This
allows the load to be partially decoupled from the motor,
and the exerted force to be evaluated by measuring the
spring’s deflection. Our proposed SEA consists of a torsional
spring designed to be attached to Dynamixel MX series servo
actuators, manufactured by Robotis (for more details see [2],
[3]). This servo actuator was chosen due to its wide popularity
among researchers in the robotics field, however the general
idea can be easily adapted to fit other servo actuators of similar
“RC-servo-style” design. The elastic element consists of a
two-part component, using a modular spring designed using

Physical Specifications
Robot Height 392.5mm

Reach 542.5mm
Robot Weight 5.719kg

Degrees of Freedom 13
Number of SEA Joints 8 (4 in each arm)

Max Payload 2.5kg
Servomotors MX-106R and MX-64R

Frame material Aluminium
Computer

Processor 4th gen. Intel Core i5 4250U
Memory 8GB 1333MHz DDR3L
Storage 120GB SSD mSATA

Control bus
PC interface mPCI-e

Number of channels 4
Bus protocol RS-485

Baudrate 400kbps
Camera

Model FireFlyMV FMVU-13S2C
Resolution 1280× 960

Frame Rate up to 60 FPS
Lens Mount C / CS

Electrical Specifications
Supply Voltage 12 Volts DC

Max Consumption 1200 Watts

TABLE I: Dimitri’s Technical Specifications.

Fig. 2: Reference diagram for Denavit-Hartenberg parameters.

i αi ai di θi
0 0 0 0 θ0
1 0 a1 0 θ1
2 π/2 0 0 θ2
3 − π/2 a3 0 θ3
4 π/2 0 d3 θ4
5 π/2 0 d4 θ5
6 − π/2 a6 0 θ6
7 π/2 0 d6 θ7
8 0 a8 0 0

TABLE II: Denavit-Hartenberg parameters right arm.

a thermoplastic polyurethane (TPU) elastomer (see Figure 4).
The material is cheap, tough, easy to mill and presents rubber-
like elasticity [4]. This is an extremely low-cost design since
it can be easily manufactured using a 3-axis CNC router.
The shape of the spring was designed so as to allow large



Fig. 3: Finite Element Analysis of von Mises stress.

Fig. 4: Manufactured polyurethane-based torsional spring.

angular displacements both clockwise and counter-clockwise,
with a linear force/angle ratio over the full range of torque
supported by the motors. Figure 3 shows the simulated spring
displacement at maximum motor torque.

C. Software Structure

The base code for controlling motors and SEAs is released
under the MIT open-source license. The code is object-
oriented, written in C++ with minimal dependencies. Except
for the vision processing, which depends on OpenCV, all base
code depends only on standard system libraries.

The UML class diagram is drafted in Figure 5. Class
JointChain combines series of joints (instances of Joint)
to compose the arms, the neck and the waist. These
JointChain objects are brought together in the main class
Dimitri. Class ElasticJoint derives from class Joint,
extending its functions to include the feedback from the
springs and a PID controller.

D. MTRNN Experiment

A MTRNN is a type of recurrent neural network that uses
neurons with different timescales capable of self-organizing a
functional hierarchy. Neurons with a small time constant are
called fast context (FC) units, and ones that have a larger time
constant are called slow context (SC) units. Similar to [5],
input and output units are only connected to FC neurons. In
our work all output units have time constant of 1 and show
no recurrent connections. The current external input states can
be received by the input units and their predicted states are
generated by the output units.

Fig. 5: Simplified UML class diagram.

Neural activities are calculated based on a conventional
firing rate model in which each neurons activity entails average
firing rate of other neurons, and its own decayed internal value
from the previous time step as shown in 1
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where ui,t is the internal state value of ith neuron at time
t, wij is the connectivity weight from ith context neuron to
jth context neuron, wik is the connectivity weight from ith
neuron unit to kth input unit, cj,t is the context activation
value of jth neuron at time t, xk,t is the external input of kth
input unit at time t, bi is the bias of the ith neuron, and τi
is the time constant of the ith neuron. If the neuron belongs
to SC units, the second summation term does not exist, since
there are no connections to the input units. The connection
weights between context neurons (wij) are bidirectional, and
all neurons are connected to each other.

1) Softmax: A softmax transformation is used to remap
each input yi,t into a higher dimensional space yij,t according
to receptive fields of adjacent intervals of equal length. The
transformation is performed as follows [6]

yij,t =
exp

(
−||kij−ji,t||2

σ

)
∑
j∈Z exp

(
−||kij−ji,t||2

σ

) (2)

where kij represents the jth neuron of the reference vector for
the ith dimension of the real input, yi,t is the ith dimension
of the real input value before transformation at time t, σ is
a constant value that specifies the shape of the distribution
(0.05 in our experiment), and yij,t is the transformed vector.
Equation below computes the reference vectors

kij = BMin
i +

BMax
i −BMin

i

l(i)− 1
(j − 1) (3)

where BMin
i , BMax

i , and l(i) represent the minimum value
for ith dimension of the real input data, the maximum value



for ith dimension of the real input data, and dimension of the
reference vector, respectively.

The dimension of the reference vector in this study is
11, which means that this transformation changes each real
input dimension to 11. The transformation is applied to each
input dimension independently. Our experiment used 10 real
input dimensions, resulting in 110 softmax input dimensions
in which each 11 of them are computed independently.

The inverse softmax transformation described below is used
to calculate the ith dimension of the real output units:

yi,t =
∑
j∈Z

yij,tkij (4)

2) Generation and training methods: As shown in equa-
tion 1, the internal dynamics of the context neurons can be
obtained based on a conventional firing rate. To obtain the
context output values for the forward dynamics, the activation
function was ci,t+1 = (1.7159)tanh(0.666667ui,t+1). The fol-
lowing equations perform the forward dynamics of the output
unit

uij,t+1 =
∑
l

wijlcl,t + bij (5)

yij,t+1 =
exp (uij,t+1)∑
k exp(uik,t+1)

(6)

where uij,t+1 is the internal state of the jth softmax output
unit corresponding to the ith real output unit, wijl is the
connectivity weight from the lth neuron in the FC units to the
jth softmax output unit corresponding to the ith real output
unit, cl,t is the cotext output of the lth neuron, bij is the bias of
the jth softmax output unit corresponding to the ith real output
unit, and yij,t+1 is the jth softmax output unit corresponding
to the ith real output unit at time t+1.

A conventional back-propagation through time (BPTT)
scheme is used for the network training [7]. The learnable
parameters are optimized in the direction of minimization of
the Kullbak-Leibler divergence (noted as E) between desired
and real activation values of softmax output units (ȳi,t+1 and
yi,t+1, respectively), according to the equation

E =
∑
t

∑
i∈O

yi,t+1 log(
ȳi,t+1

yi,t+1
) (7)

All learnable parameters, noted as θ, are weights and biases
and initial states that approach to their optimal values in the
opposite direction of the gradient ∂E∂θ , and they are updated as
follows

∇θ(n+ 1) = µ∇θ(n)− α∂E
∂θ

(8)

θ(n+ 1) = θ(n) +∇θ(n+ 1) (9)

where α is the learning rate, set as 0.00003 in our experiment,
and µ is the momentum term, set 0.9 in our experiment. The
equations about the weight, bias and initial states gradients
can be seen in [8].

All learnable parameters are set randomly at the beginning
of the training from a uniform distribution on the interval [-
1
M , 1

M ], where M is the number of context neuron units.

Fig. 6: chemes for (A) open-loop generation (B) closed-loop
generation. ST and IST are the abbreviations for the softmax
transform, and inverse of the softmax transform, respectively.

In of our experiment, the open-loop generation approach is
used in the training mode in which MTRNN receives the
current external inputs and generates one or multiple look-
ahead prediction steps of the outputs. The closed-loop mode
is defined as giving the current prediction outputs to the next
time inputs. This can also be referred as the mental simulation
of actions [9], [10]. Schematics of open-loop and closed-loop
generations are shown in Figure 6(A) and 6(B), respectively.
In Fig. 6, l represents the number of look-ahead prediction
steps of the output that the MTRNN generated based on the
current input.

III. RESULTS

We employed MTRNN to work as the brain of our robot,
allowing Dimitri to learn some combined prototypical move-
ment patterns and later generate them in the testing phase. For
this purpose, we trained three combined patterns by grasping
the robot’s hand and demonstrating the desired movements. A
green cubical object (6×6×6 cm) was put on a table in front
of Dimitri and Dimitri’s camera was tracking the object by
changing the neck’s pan and tilt angles – this task was done
by using the OpenCV framework included in the base code.
The neck joint angles were considered as our visual inputs.
To collect the training data, the robot always started from the
same home position. After initialization, the torques of both
arm joins (8 DOFs) were set to low values while the waist
joints were fixed with a high torque. This made it easy for the
experimenter to move the robot’s arms in order to demonstrate
the compositional movement patterns.

Three prototypical patterns were defined: (1) Push object
with right hand (labeled PUSH); (2) Touch object with right
hand (labeled TOUCH); and (3) Hit table with alternating
hands (labeled HIT). Instead of training these in independently,
they were trained through compositional patterns, which con-
sisted of a combination of two successive prototypical patterns
demonstrated in sequence. The compositional patterns were:
(A) HP2 / PUSH / HP / HIT / HP

2HP stands for Home Position



Fig. 7: Results of the MTRNN experiment for combined prototypical movement patterns. RR: Right Arm Roll, RP: Right Arm
Pitch, RY: Right Arm Yaw, RE: Right Arm Elbow, and similarly for left arm with LR, LP, LY and LE.

(B) HP / TOUCH / HP / HIT / HP
(C) HP / TOUCH / HP / PUSH / HP

Three training data sequences were demonstrated and
recorded for each compositional pattern by starting with the
green object on three different y coordinate positions (middle
of the table; 9cm above; 9cm below), resulting in a total of
9 training sequences. After this, the recorded sequences were
used to train the MTRNN model, which consisted of 40 FC, 20
SC, 110 softmax input and 110 softmax output units derived
from 10 dimensions (8 for the arms and 2 for the neck) as
described in II-D1. The time constants of FC and SC units
were set to 5 and 100, respectively3. Only the SC initial states
were updated during training, while FC initial states were
always set to zero. The initial states of slow context neurons
had different values for each training sequence. In other words,
through an association between initial states and corresponding
sequences, MTRNN could be trained to generate multiple
sequences. The network was trained for 85000 epochs to
generate 5 look-ahead prediction steps (l = 5) of the next
input sequences using open-loop generation.

After the training was successfully finished, the MTRNN
was used to control Dimitri’s arms. Dimitri’s waist joints were
fixed and the neck angles were commanded to track the object,
giving the resulting values as external visual inputs to the
network. The MTRNN generated the corresponding arms joint
angles by means of the closed-loop generation. This means
that MTRNN was in a semi-closed loop state (visual inputs
were in an open-loop mode, while arms joint angles were in

3Unit is in number of samples.

a closed-loop mode). We tested the MTRNN for the three
initial object positions and neck joint angles for all 9 com-
positional movement patterns. Dimitri was able to generate
all 9 combinatorial movement patterns successfully. Figure 7
(A), (B), and (C) display the results for one of the initial y
coordinate positions. The transitions of primitives patterns can
be observed on the figures of the first row, which show the
arms joint angles over time. The second row illustrates the
SC neural activities of 10 selected neurons, and the third row
shows the FC neural activities of 10 selected neurons. Visual
inputs (neck joint angles) are not displayed for the sake of
clarity. It can be seen that the self-organization of a functional
hierarchy is successfully performed since their periodicity are
different in a way that SC activities are changed slowly to
observe the transitions among prototypical movement patterns
while FC activities are changed fast in order to encode the
specific dynamics of each primitive movement pattern. We
also performed the mental simulation of the combinatorial
prototypical patterns using totally closed-loop generation with
no external inputs by means of the initial states of the SC
units. Dimitri succeeded to generate all 9 patterns.

IV. CONCLUSION

This work presented Dimitri, an open-software and open-
hardware humanoid torso robot designed for research on
mechanical compliance and its applications. Our goal was
to present a low cost alternative suitable for researchers in
low-income countries. Despite its limitations, such simplistic
design easily proves its value when the task requires joint
compliance and safe human-robot interaction. The MTRNN



results showed that different compositional patterns could be
generated by the aid of the initial sensitivities of the SC units
in both closed-loop and semi-closed loop manners, and the
intention could be changed in a top-down manner from the
higher neural states to the output units. Experiments involving
online learning and exploration are not only performed with
more safety, but also include torque feedback.

The springs were found to perform very well, adding force
sensibility with very little compromise on joint speed. The
aluminium frame proved itself robust and light enough. One
noticeable disadvantage is the susceptibility for oscillatory
behaviour. More present on shoulder joints, oscillations were
easily controlled through PID gain adjustments, at the expense
of the system’s response speed.

Besides providing compliance, force feedback and control
for dynamic object manipulation, Dimitri’s modular SEAs
help the joints to absorb shock, making the robot very robust
to impact. As an experiment to illustrate this robustness we
dropped a brick of 2.57kg from 50cm above the robot’s left
arm, as shown in Figure 8. The elastic elements bent during the
impact and the control over the servo motors quickly recovered
the arm back to its original position.

For future work we plan on extending the capabilities of
the robot in order to allow research on themes such as bipedal
walking and human social interaction. We are currently manu-
facturing a biped leg design based on parallel link mechanisms
combined with our SEAs for the knee joints. We are also
developing a prototype animatronic face. Furthermore, wrist
and end effector extension designs are being tested.
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Fig. 8: A 2.57kg brick is dropped from a height of 50cm over
Dimitri’s left arm, causing no damage. The robot recovers the
original posture less than a second later.


